CSES - Datatähti Open 2017 - Results
Submission details
Task:Family reunion
Sender:ainta1
Submission time:2017-01-23 06:56:38 +0200
Language:C++
Status:READY
Result:0
Feedback
groupverdictscore
#1UNKNOWN0
#2UNKNOWN0
#3UNKNOWN0
Test results
testverdicttimegroup
#1UNKNOWN--1details
#2UNKNOWN--2details
#3UNKNOWN--3details

Compiler report

input/code.cpp: In function 'int main()':
input/code.cpp:504:31: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d %d %d",&N,&M,&K);
                               ^
input/code.cpp:509:30: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
             scanf("%d",&a[i]);
                              ^

Code

/*#include<stdio.h>
#include<algorithm>
#include<vector>
using namespace std;
int n, m, RR[40][40], DD[40][40], ES[40][40];
long long res;
int Num(int x, int y, int ck){
    return (x-1)*m+y + ck*n*m;
}
struct Edge{
    int b, e, c, f;
}E[201000];
int EC, source, sink;
vector<int>G[5000];

void Make_Edge(int b, int e, int f, int c){
    G[b].push_back(EC);G[e].push_back(EC+1);
    E[EC].b=b,E[EC].e=e,E[EC].f=f,E[EC].c=c;EC++;
    E[EC].b=e,E[EC].e=b,E[EC].f=0,E[EC].c=-c;EC++;
}

int Path[10100], D[10100], Q[1010000], InQ[10100];

int SPFA(){
    int i, head = 0, tail = 0, x;
    for(i=0;i<=sink;i++){
        D[i] = -1e9;
        InQ[i] = 0;
    }
    D[0] = 0;
    Q[++tail] = 0;
    InQ[0] = 1;
    while(head < tail){
        x = Q[++head];
        InQ[x] = 0;
        for(i=0;i<G[x].size();i++){
            Edge tp = E[G[x][i]];
            if(tp.f && D[tp.e] < D[x] + tp.c){
                D[tp.e] = D[x] + tp.c;
                Path[tp.e] = G[x][i];
                if(!InQ[tp.e]){
                    InQ[tp.e] = 1;
                    Q[++tail] = tp.e;
                }
            }
        }
    }
    return D[sink];
}

void MCMF(){
    int t, x, y, f;
    while((t = SPFA()) >= 0){
        x = sink;
        f = 100;
        while(x){
            y = Path[x];
            f=min(f,E[y].f);
            x = E[y].b;
        }
        res += 1ll*f*t;
        x = sink;
        while(x){
            y = Path[x];
            E[y].f -= f;
            E[y^1].f += f;
            x = E[y].b;
        }
    }
}

int main(){
    int TC,TT,i,j,K;
    scanf("%d",&TC);
    for(TT=1;TT<=TC;TT++){
        printf("Case #%d: ",TT);
        scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++)for(j=1;j<m;j++)scanf("%d",&RR[i][j]);
        for(i=1;i<n;i++)for(j=1;j<=m;j++)scanf("%d",&DD[i][j]);
        EC = 0;
        source = 0, sink = n*m*2+1;
        scanf("%d",&K);
        for(i=1;i<=K;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            ES[x][y]=1;
        }
        for(i=1;i<=n;i++){
            for(j=1;j<=m;j++){
            }
        }
        
        MCMF();
        if(res < -5000000){
            printf("Impossible\n");
        }
        else{
            printf("%lld\n",res);
        }
        for(i=0;i<=sink;i++){
            G[i].clear();
        }
    }
}*/

/*
#include<stdio.h>
#include<algorithm>
#include<cstdlib>
using namespace std;
int n, K, w[1010000];
long long res, S[1010000], Sum, D1[1010000][8], D2[1010000][8], D[64][2], DP[2048][2];
bool v[64][2];
int C[2048], M[2048], m, Path[2048][2];
bool vv[2048][2];
void Dijk(){
    int i, j;
    for(i=0;i<(1<<m);i++)v[i][0]=v[i][1]=false;
    while(1){
        int x=-1, y=-1;
        long long MM = 1e17;
        for(i=0;i<(1<<m);i++){
            for(j=0;j<2;j++){
                if(MM > D[i][j] && !v[i][j]){
                    MM = D[i][j];
                    x=i,y=j;
                }
            }
        }
        if(x==-1)break;
        v[x][y]=true;
        if(y==0){
            for(j=0;j<(1<<m);j++){
                if(j&x || C[j]>3)continue;
                D[x^j][1] = min(D[x^j][1], D[x][y] + M[j]);
            }
        }
        else{
            for(j=0;j<m;j++){
                if(!((1<<j)&x))continue;
                D[x^(1<<j)][0] = min(D[x^(1<<j)][0], D[x][y] + w[j+1]);
            }
        }
    }
}
void Dijk2(){
    int i, j;
    for(i=0;i<(1<<n);i++)vv[i][0]=vv[i][1]=false;
    while(1){
        int x=-1, y=-1;
        long long MM = 1e17;
        for(i=0;i<(1<<n);i++){
            for(j=0;j<2;j++){
                if(MM > DP[i][j] && !vv[i][j]){
                    MM = DP[i][j];
                    x=i,y=j;
                }
            }
        }
        if(x==-1)break;
        vv[x][y]=true;
        if(y==0){
            for(j=0;j<(1<<n);j++){
                if(j&x || C[j]>3)continue;
                if(DP[x^j][1] > DP[x][y] + M[j]) Path[x^j][1] = x;
                DP[x^j][1] = min(DP[x^j][1], DP[x][y] + M[j]);
            }
        }
        else{
            for(j=0;j<n;j++){
                if(!((1<<j)&x))continue;
                if(DP[x^(1<<j)][0]> DP[x][y] + w[j+1]) Path[x^(1<<j)][0] = x;
                DP[x^(1<<j)][0] = min(DP[x^(1<<j)][0], DP[x][y] + w[j+1]);
            }
        }
    }
}
int TP[1010];
long long Do(int a, int b, int c){
    int t = a*3-a-b-c, i;
    long long S = 1ll*a*w[1]+1ll*b*w[2]+1ll*c*w[3];
    for(i=n;i>=6;i-=3){
        if(i-3 >= 3+t){
            S += w[i];
        }
        else break;
    }
    int ed = i;
    for(i=ed;i>=4;i--)TP[i] = 1;
    TP[1]=a+1,TP[2]=b+1,TP[3]=c+1;
    int s = ed+a+b+c;
    if(s%3==2){
        TP[1]--,TP[2]--;
        S+=w[2];
    }
    while(1){
        int x1=-1,x2=-1,x3=-1;
        for(i=1;i<=n;i++){
            if(TP[i]){
                if(x1==-1)x1=i;
                else if(x2==-1)x2=i;
                else if(x3==-1){
                    x3=i;
                    break;
                }
            }
        }
        if(x1==-1)break;
        TP[x1]--,TP[x2]--,TP[x3]--;
        S += w[x3];
    }
    return S;
}
int main(){
    int i, j, k;
    srand(1879);
    int tc=0;
    while(1){
        printf("%d\n",++tc);
        n = 9, K = 3;
        for(i=1;i<=n;i++){
            w[i] = rand()%5+1;
        }
        sort(w+1,w+n+1);
        for(i=0;i<=n;i++){
            for(j=0;j<8;j++){
                D1[i][j]=D2[i][j]=1e18;
            }
        }
        for(i=0;i<(1<<n);i++){
            C[i] = 0, M[i] = 0;
        }
        m = min(n,6);
        for(i=0;i<(1<<n);i++){
            for(j=0;j<n;j++)if(i&(1<<j))C[i]++, M[i] = w[j+1];
        }
        D1[n][0] = 0;
        res = 1e18;
        for(i=n;i>=6;i--){
            for(int cc = 0; cc <= 4; cc++){
                for(j=0;j<8;j++){
                    if(C[j] != cc)continue;
                    if(D2[i][j]>1e17)continue;
                    for(k=0;k<3;k++){
                        if((1<<k)&j){
                            D1[i][j^(1<<k)] = min(D1[i][j^(1<<k)], D2[i][j] + w[k+1]);
                        }
                    }
                }
                for(j=0;j<8;j++){
                    if(C[j] != cc-1)continue;
                    for(k=0;k<8;k++){
                        if(k&j)continue;
                        if(C[k]>=2)D2[i][j^k] = min(D2[i][j^k], D1[i][j] + M[k]);
                        if(C[k]==3)continue;
                        D2[i-1][j^k] = min(D2[i-1][j^k], D1[i][j] + w[i]);
                        if(C[k]==2)continue;
                        D2[i-2][j^k] = min(D2[i-2][j^k], D1[i][j] + w[i]);
                        if(C[k]==1)continue;
                        D2[i-3][j^k] = min(D2[i-3][j^k], D1[i][j] + w[i]);
                    }
                }
            }
        }
        for(i=0;i<(1<<m);i++)D[i][0]=D[i][1]=1e18;
        for(i=3;i<=m;i++){
            for(j=0;j<8;j++){
                int s = 0;
                for(k=0;k<m;k++){
                    if(k>=i || (k<3 && j&(1<<k))) s += (1<<k);
                }
                D[s][0] = D1[i][j];
                D[s][1] = D2[i][j];
            }
        }
        Dijk();
        long long res1 = D[(1<<m)-1][1];
        
        
        int ret = (n-2)/2;
        res1 = 1e18;
        for(i=0;i<=ret;i++){
            for(j=0;i+j<=ret;j++){
                k=ret-i-j;
                if(i<j||j<k)continue;
                res1 = min(res1,Do(i,j,k));
            }
        }
        
        for(i=0;i<(1<<n);i++)DP[i][0]=DP[i][1]=1e18;
        DP[0][0] = 0;
        Dijk2();
        long long res2 = DP[(1<<n)-1][1];
        if(res1 != res2){
            for(i=1;i<=n;i++)printf("%d ",w[i]);
            printf("\n");
            printf("%lld %lld\n",res1,res2);
            int x = (1<<n)-1, y = 1;
            while(x||y){
                printf("%d %d\n",x,y);
                x = Path[x][y];
                y = !y;
            }
            break;
        }
    }
}*/
/*
#include<stdio.h>
#include<algorithm>
using namespace std;
int n, K;
int w[1010000], TP[1010000];
long long S[1010000], res;
void Do(int a, int b, int c){
    int t = a*3-a-b-c, i;
    long long S = 1ll*a*w[1]+1ll*b*w[2]+1ll*c*w[3];
    for(i=n;i>=6;i-=3){
        if(i-3 >= 3+t){
            S += w[i];
        }
        else break;
    }
    int ed = i;
    for(i=ed;i>=4;i--)TP[i] = 1;
    TP[1]=a+1,TP[2]=b+1,TP[3]=c+1;
    int s = ed+a+b+c;
    if(s%3==2){
        TP[1]--,TP[2]--;
        S+=w[2];
    }
    while(1){
        int x1=-1,x2=-1,x3=-1;
        for(i=1;i<=n;i++){
            if(TP[i]){
                if(x1==-1)x1=i;
                else if(x2==-1)x2=i;
                else if(x3==-1){
                    x3=i;
                    break;
                }
            }
        }
        if(x1==-1)break;
        TP[x1]--,TP[x2]--,TP[x3]--;
        S += w[x3];
    }
    res = min(res,S);
}
int main(){
    int i, j, k;
    scanf("%d%d",&n,&K);
    for(i=1;i<=n;i++){
        scanf("%d",&w[i]);
        S[i] = S[i-1] + w[i];
    }
    if(n<=K){
        printf("%d\n",w[n]);
        return 0;
    }
    if(K==2){
        long long Sum;
        Sum = S[n]-S[1] + 1ll*w[1]*(n-2);
        res = Sum;
        for(i=n-1;i>=3;i-=2){
            Sum -= w[i]+w[i+1]+w[1]*2;
            Sum += w[i+1]+w[2]+w[2]+w[1];
            res = min(res,Sum);
        }
        printf("%lld\n",res);
        return 0;
    }
    if(n>100)return 0;
    int ret = (n-2)/2;
    res = 1e18;
    for(i=0;i<=ret;i++){
        for(j=0;i+j<=ret;j++){
            k=ret-i-j;
            if(i<j||j<k)continue;
            Do(i,j,k);
        }
    }
    printf("%lld\n",res);
}*/
/*#include<stdio.h>
#include<algorithm>
using namespace std;
struct AA{
    long long g, len;
};
char p[101000];
int Next[101000][3], Bef[101000][3];
long long po[1010000], Mod = 1000000007, ML = 1000000006;
AA Exp(int b, int e);
long long Pow(long long a, long long b){
    long long r = 1;
    while(b){
        if(b%2)r=r*a%Mod;
        b/=2;a=a*a%Mod;
    }
    return r;
}
AA Number(int b, int e, long long mod){
    int i;
    long long s = 0;
    for(i=b;i<=e;i++){
        s=(s*10+p[i]-'0')%mod;
    }
    AA ret;
    ret.g = s, ret.len = e-b+1;
    return ret;
}
AA ConCate(AA a, AA b){
    AA ret;
    ret.g = (a.g * Pow(10, b.len) + b.g)% Mod;
    ret.len = (a.len + b.len) % ML;
    return ret;
}
AA Get(int b, int e){ // (1 ~ p[b-e]) % Mod
    AA ret;
    ret.g=0,ret.len=0;
    int i;
    for(i=1;i<=e-b;i++){
        AA tp = Make(i);
        ret = ConCate(ret, tp);
    }
    return ret;
}
AA Repeat(int b, int e, AA a){
    AA tp = Number(b, e, ML);
    AA ret;
    ret.len = tp.g * a.len % ML;
    if(tp.g == 0)ret.g = 0;
    else{
        ret.g = (Pow(10, a.len * tp.g) + Mod - 1) * Pow(Pow(10, a.len) + Mod - 1, Mod - 2) % Mod;
    }
    return ret;
}
AA Term(int b, int e){
    int pv;
    if(Next[b][0] <= e){
        pv = Next[b][0];
        AA tp1 = Get(b, pv-1), tp2 = Get(pv+1, e);
        long long L2 = (tp2.len - tp1.len + ML)%ML;
        AA ret;
        ret.g = (tp2.g - Pow(10, L2) * tp1.g % Mod + Mod)%Mod;
        ret.len = L2;
        return ret;
    }
    if(Next[b][2] <= e){
        return Repeat(b, Next[b][2] - 1, Exp(Next[b][2] + 1, e - 1));
    }
    return Number(b, e, Mod);
}
AA Exp(int b, int e){
    int pv = Bef[e][1];
    if(b <= pv){
        return ConCate(Exp(b,pv-1), Term(pv+1, e));
    }
    return Term(b, e);
}
int main(){
    int i, n;
    scanf("%s",p+1);
    for(i=1;p[i];i++);
    n = i-1;
    for(i=1;i<=n;i++){
        Bef[i][0] = Bef[i-1][0],Bef[i][1] = Bef[i-1][1],Bef[i][2] = Bef[i-1][2];
        if(p[i]=='-')Bef[i][0] = i;
        if(p[i]=='+')Bef[i][1] = i;
        if(p[i]==')')Bef[i][2] = i;
    }
    for(i=0;i<3;i++)Next[n+1][i] = n+1;
    for(i=n;i>=1;i--){
        Next[i][0] = Next[i+1][0],Next[i][1] = Next[i+1][1], Next[i][2] = Next[i+1][2];
        if(p[i]=='-')Next[i][0] = i;
        if(p[i]=='+')Next[i][1] = i;
        if(p[i]=='(')Next[i][2] = i;
    }
    po[0]=1;
    for(i=1;i<=1000000;i++)po[i]=po[i-1]*10%Mod;
    printf("%lld\n",Exp(1,n).g);
}
*/
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define MAXK 25

using namespace std;

int getColour (int num) {
    srand(num);
    return rand() % 3;
}

int notColour (int c1, int c2) {
    return 3 - c1 - c2;
}

int main () {
    printf("\n");
    int N, M, K;
    scanf("%d %d %d",&N,&M,&K);
    int i, j;
    static int a[MAXK];
    for (j = 0; j < M; j++) {
        for (i = 0; i < 2*K+1; i++) {
            scanf("%d",&a[i]);
        }
        int c = getColour(a[K]);
        int l = 1;
        while (l <= K) {
            if (getColour(a[K-l]) != c) {
                break;
            }
            l++;
        }
        if (l > K) {
            while (1) {
                
            }
        }
        int r = 1;
        while (r <= K) {
            if (getColour(a[K+r]) != c) {
                break;
            }
            r++;
        }
        if (r > K) {
            while (1) {
                
            }
        }
        int res;
        if (l) {
            res = c;
        } else {
            res = notColour(c, getColour(a[K+r]));
        }
        if (res == 0) {
            printf("A\n");
        } else if (res == 1) {
            printf("B\n");
        } else {
            printf("C\n");
        }
    }
    return 0;
}

Test details

Test 1

Group: 1

Verdict: UNKNOWN

input
#!/bin/bash
set -e
OFFSET=$(grep -onam1 '^__DATA_...

correct output
50

user output
(not available)

Test 2

Group: 2

Verdict: UNKNOWN

input
#!/bin/bash
set -e
OFFSET=$(grep -onam1 '^__DATA_...

correct output
50

user output
(not available)

Test 3

Group: 3

Verdict: UNKNOWN

input
#!/bin/bash
set -e
OFFSET=$(grep -onam1 '^__DATA_...

correct output
50

user output
(not available)